By Lisa Huff
While many private sector investments have been made in optical communications over the years, none have contributed as much ongoing support as the US federal government has. The Defense Advanced Research Projects Agency (DARPA) and the National Institute of Standards and Technology (NIST) have been at the forefront of funding for decades and are continuing to ante up now.
One of these projects being developed at NIST right now. TERAPIC™: The TERAPIC (Terabit Photonic Integrated Circuits) project has as its goal to "develop technology for optical components that can transmit and receive up to one terabit of data per second over one single-mode fiber, greatly reducing complexity and cost in high-capacity fiber-optic networks."
Privately-held CyOptics and Kotura have partnered on this project to bring Terabit connectivity to data centers and HPC centers by reducing hundreds of individual components "to less than 10." The project is expected to produce an integrated component that can "transmit and receive up to one Tbps of data over one single-mode fiber across transmission distances of up to two-kilometers." The project team has been successful with 100G and 500G prototype devices that transmit up to two-kilometers and continue to work towards Terabit devices.
The PICs will be monolithic arrays of CWDM lasers and detectors that will be automatically assembled in CyOptics' manufacturing facility in Breinigsville, PA. Kotura has developed two integrated silicon photonics chips—data multiplexing/transmission and data demultiplexing/detection that are integrated into the overall transmit optical sub-assemlbies (TOSAs) and receive optical sub-assemblies (ROSAs) from CyOptics.
The TERAPIC project is set to be completed in 2010 so products are expected to be released in 2011, but early adopter customers have yet to be identified so actual revenue-generating opportunities may still be several years off. Especially since they are targeted for Terabit Ethernet, which has not even started on its standardization tract yet. However, the 100G and 500G parts that were developed could be made production-worthy in the interim.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.